# NOT RUN {
### example from T. M. Idzorek's paper "A STEP-BY-STEP GUIDE TO THE
### BLACK-LITTERMAN MODEL"
# }
# NOT RUN {
pick <- newPMatrix(letters[1:8], 3)
pick[1,7] <- 1
pick[2,1] <- -1
pick[2,2] <- 1
pick[3, 3:6] <- c(0.9, -0.9, .1, -.1)
confidences <- 1 / c(0.00709, 0.000141, 0.000866)
myViews <- BLViews(pick, q = c(0.0525, 0.0025, 0.02), confidences, letters[1:8])
myViews
### Modified COP example from Meucci's "Beyond Black-Litterman: Views on
### non-normal markets"
dispersion <- c(.376,.253,.360,.333,.360,.600,.397,.396,.578,.775) / 1000
sigma <- BLCOP:::.symmetricMatrix(dispersion, dim = 4)
caps <- rep(1/4, 4)
mu <- 2.5 * sigma <!-- %*% caps -->
dim(mu) <- NULL
marketDistribution <- mvdistribution("mt", mean = mu, S = sigma, df = 5 )
pick <- newPMatrix(c("SP", "FTSE", "CAC", "DAX"), 1)
pick[1,4] <- 1
vdist <- list(distribution("unif", min = -0.02, max = 0))
views <- COPViews(pick, vdist, 0.2, c("SP", "FTSE", "CAC", "DAX"))
# }
Run the code above in your browser using DataLab